Series 9 — Solutions

Exercise 1
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To design a PI or PID regulator, we can use the Ziegler-Nichols method for which we first
approximate the system in the following manner:
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In this case, we have one pole at -1, and the other pole at -0.1. The response of the system is
dominated by the slower of the two modes, given by the pole at -0.1. Hence, we keep that pole
in the denominator:
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We then find 6 by expanding the exponential function and equating it as follows:

1

s+1
1 1
5 — =
efs s+1
e =1+s
242
=>14+0s+ >
=>140s =1+s
>60=1

e~ bs =

=145

With this, we now have our approximation of G(s):
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We can now proceed to design our regulators
(a) PI regulator:
Kr =0.9 ‘ =0.9 10 =45
B9k~ 771.27 7
7, =3.336 =3.33
(b) PID regulator:
Kp=12=12-2 =6
R™ "%k~ ""1.27
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Exercise 2

(a) We have a system given by
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The Laplace transform of this is:
sY(s) +0.2Y(s) =04 e ° U(s)
The transfer function that represents the system processes is:
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A schematic of the system. Note that in this case, there is no dynamic associated with the
measuring instrument G,,, and the control instrument G, .. Hence, they both are constants, with
Gom = Kom and Goc = Koc-

The transfer function of the measuring device, given by G, is calculated from the slope of the
provided graph:

M(s)
oM = m= KOM = 025
Similarly, the transfer function of the controller is given by
U(s)
oc = m = Koc =10

The system to be controlled takes in as input N and provides as an output M. The
corresponding transfer function from N — M is given by
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G(s) = Goc - Gp - Goy = Koc - Gp - Koy =




(b) The PID controller can be designed using the Ziegler-Nichols method. Here we will have 7 =
5,K=5,and 6 =1, giving:

Ky=12—=12 > =1.2
R= ™9~ ""1.5 7 —
7,=260 =2

7, =056 =05
The overall transfer function of the controller can be written as follows:
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(c) The overall transfer function for the closed loop system is given by the following

Y(s)  Kom-Gr-Goc-Gp  Kom:Gr-Koc-Gp
Yo(s) 1+Gr-Goc:Gp-Goy 1+ Gr-Koc:Gp-Kom

Note that the numerator corresponds to all the transfer functions that lead in a straight line from
the input y, to the output y, while the denominator is 1 + all the transfer functions inside the
loop. Considering that G(s) = Koy - Gp - Ko¢, We have the following expression for Y (s)/Y,(s):

Y(s)  Gg-G
Y.(s) 1+Gg-G
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The static gain Kgr = 151_1)% Yo 1



Exercise 3
The closed loop system is given by

Gow = Gg - G(s)
BE™ 14 Gr-G(s)

The stability of the system is determined by the roots of the denominator. We thus analyze the
characteristic equation of the system:

f(s)=14+Gr-G(s)=0

2 KR(TIS + 1) _
2s+1 ;S B

=1+ 0

= 21,52+ 1,(1 + 2Kg)s + 2K = 0
(a) Variation in Kg
If we keep 1; = 2, and vary Ky, we get:
252+ (14+2Kg)s+Kg =0

The roots of this system are given by:
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This means that:

1
b1=75P2= —Kp

Here we see that one pole is always in the left hand side of the plane. The other pole is
dependent on the value of Ky, with stability, and non-oscillatory behavior, guaranteed for Kz >
0.

(b) Variation in t;

To study the impact of varying t; on the stability of the system, we will first fix K = 4.
We then have:
f(s) =215 +91;s +8=0
Now the roots of the system are:
—97; + /8112 — 647,
47,
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As 1, > o, p; - —18,p, = 0. The slower of the two poles tends to 0 from the left hand side,
but stays negative. In such a situation, the system is stable and non-oscillatory. For certain

conditions, the system can be stable but oscillatory. This happens when 7; < %, leading to the
term inside the square root being negative, and the formation of complex poles.



