
Series 9 – Solutions 

Exercise 1 

𝐺(𝑠) =
2

(𝑠 + 1)(10𝑠 + 1)
 

To design a PI or PID regulator, we can use the Ziegler-Nichols method for which we first 

approximate the system in the following manner: 

𝐺(𝑠) ≅
𝐾𝑒−𝜃𝑠

𝜏𝑠 + 1
 

In this case, we have one pole at -1, and the other pole at -0.1. The response of the system is 

dominated by the slower of the two modes, given by the pole at -0.1. Hence, we keep that pole 

in the denominator: 

𝐺(𝑠) ≅
2𝑒−𝜃𝑠

10𝑠 + 1
 

We then find 𝜃 by expanding the exponential function and equating it as follows: 

𝑒−𝜃𝑠 =
1

𝑠 + 1
 

⇒
1

𝑒𝜃𝑠
=

1

𝑠 + 1
 

⇒ 𝑒𝜃𝑠 = 1 + 𝑠 

⇒ 1 + 𝜃𝑠 +
𝜃2𝑠2

2
+ ⋯ = 1 + 𝑠 

⇒ 1 + 𝜃𝑠 ≅ 1 + 𝑠 

⇒ 𝜃 ≅ 1 

With this, we now have our approximation of 𝐺(𝑠): 

𝐺(𝑠) ≅
2𝑒−𝑠

10𝑠 + 1
 

We can now proceed to design our regulators 

(a) PI regulator: 

𝐾𝑅 = 0.9
𝜏

𝜃𝐾
= 0.9

10

1 ⋅ 2
= 4.5 

𝜏𝐼 = 3.33 𝜃 = 3.33  

(b) PID regulator: 

𝐾𝑅 = 1.2
𝜏

𝜃𝐾
= 1.2

10

1 ⋅ 2
= 6 

𝜏𝐼 = 2 𝜃 = 2 

𝜏𝐷 = 0.5 𝜃 = 0.5 

 

 



Exercise 2 

(a) We have a system given by  
𝑑𝑦(𝑡)

𝑑𝑡
+ 0.2𝑦(𝑡) = 0.4𝑢(𝑡 − 1) 

The Laplace transform of this is: 

𝑠𝑌(𝑠) + 0.2𝑌(𝑠) = 0.4 𝑒−𝑠 𝑈(𝑠) 

The transfer function that represents the system processes is: 

𝐺𝑃 =
𝑌(𝑠)

𝑈(𝑠)
=

0.4

𝑠 + 0.2
⋅ 𝑒−𝑠 

The transfer function of the measuring device, given by 𝐺𝑂𝑀 is calculated from the slope of the 

provided graph: 

𝐺𝑂𝑀 =
𝑀(𝑠)

𝑌(𝑠)
= 𝐾𝑂𝑀 = 0.25 

Similarly, the transfer function of the controller is given by  

𝐺𝑂𝐶 =
𝑈(𝑠)

𝑁(𝑠)
= 𝐾𝑂𝐶 = 10 

The system to be controlled takes in as input 𝑁 and provides as an output 𝑀. The 

corresponding transfer function from 𝑁 → 𝑀 is given by 

𝐺(𝑠) = 𝐺𝑂𝐶 ⋅ 𝐺𝑃 ⋅ 𝐺𝑂𝑀 = 𝐾𝑂𝐶 ⋅ 𝐺𝑃 ⋅ 𝐾𝑂𝑀 =
5𝑒−𝑠

5𝑠 + 1
 

 
A schematic of the system. Note that in this case, there is no dynamic associated with the 

measuring instrument 𝐺𝑂𝑀 and the control instrument 𝐺𝑂𝐶. Hence, they both are constants, with 

𝐺𝑂𝑀 = 𝐾𝑂𝑀 and 𝐺𝑂𝐶 = 𝐾𝑂𝐶. 
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(b) The PID controller can be designed using the Ziegler-Nichols method. Here we will have 𝜏 =

5, 𝐾 = 5, and 𝜃 = 1, giving: 

𝐾𝑅 = 1.2
𝜏

𝜃𝐾
= 1.2

5

1 ⋅ 5
= 1.2 

𝜏𝐼 = 2 𝜃 = 2 

𝜏𝐷 = 0.5 𝜃 = 0.5 

 

The overall transfer function of the controller can be written as follows: 

 

𝐺𝑅(𝑠) =
𝑁(𝑠)

𝐸(𝑠)
= 1.2 (

𝑠2 + 2𝑠 + 1

2𝑠
) 

 

 

(c) The overall transfer function for the closed loop system is given by the following 

𝑌(𝑠)

𝑌 (𝑠)
=

𝐾𝑂𝑀 ⋅ 𝐺𝑅 ⋅ 𝐺𝑂𝐶 ⋅ 𝐺𝑃

1 + 𝐺𝑅 ⋅ 𝐺𝑂𝐶 ⋅ 𝐺𝑃 ⋅ 𝐺𝑂𝑀
=

𝐾𝑂𝑀 ⋅ 𝐺𝑅 ⋅ 𝐾𝑂𝐶 ⋅ 𝐺𝑃

1 + 𝐺𝑅 ⋅ 𝐾𝑂𝐶 ⋅ 𝐺𝑃 ⋅ 𝐾𝑂𝑀
  

Note that the numerator corresponds to all the transfer functions that lead in a straight line from 

the input 𝑦  to the output 𝑦, while the denominator is 1 + all the transfer functions inside the 

loop. Considering that 𝐺(𝑠) = 𝐾𝑂𝑀 ⋅ 𝐺𝑃 ⋅ 𝐾𝑂𝐶, we have the following expression for 𝑌(𝑠)/𝑌 (𝑠): 

𝑌(𝑠)

𝑌 (𝑠)
=

𝐺𝑅 ⋅ 𝐺

1 + 𝐺𝑅 ⋅ 𝐺
 

𝑌(𝑠)

𝑌 (𝑠)
=

1.2 (
𝑠2 + 2𝑠 + 1

2𝑠 ) (
5𝑒−𝑠

5𝑠 + 1
)

1 +  1.2 (
𝑠2 + 2𝑠 + 1

2𝑠 ) (
5𝑒−𝑠

5𝑠 + 1
)
 

⇒
𝑌(𝑠)

𝑌 (𝑠)
=

6(𝑠2 + 2𝑠 + 1)𝑒−𝑠

2𝑠(5𝑠 + 1) + 6(𝑠2 + 2𝑠 + 1)𝑒−𝑠
 

The static gain 𝐾𝐵𝐹 = lim
𝑠→0

𝑌(𝑠)

𝑌𝑐(𝑠)
= 1 

 

 

 

 

 

 

 

 

 



Exercise 3 

The closed loop system is given by  

𝐺𝐵𝐹 =
𝐺𝑅 ⋅ 𝐺(𝑠)

1 + 𝐺𝑅 ⋅ 𝐺(𝑠)
 

The stability of the system is determined by the roots of the denominator. We thus analyze the 

characteristic equation of the system: 

𝑓(𝑠) = 1 + 𝐺𝑅 ⋅ 𝐺(𝑠) = 0 

⇒ 1 +
2

2𝑠 + 1 
⋅
𝐾𝑅(𝜏𝐼𝑠 + 1)

𝜏𝐼𝑠
= 0 

⇒ 2𝜏𝐼𝑠
2 + 𝜏𝐼(1 + 2𝐾𝑅)𝑠 + 2𝐾𝑅 = 0 

(a) Variation in 𝑲𝑹 

If we keep 𝜏𝐼 = 2, and vary 𝐾𝑅, we get: 

2𝑠2 + (1 + 2𝐾𝑅)𝑠 + 𝐾𝑅 = 0 

The roots of this system are given by: 

𝑝1,2 = 
−(1 + 2𝐾𝑅) ± √(1 + 2𝐾𝑅)2 − 8𝐾𝑅

4
 

=
−(1 + 2𝐾𝑅) ± √1 − 4𝐾𝑅 + 4𝐾𝑅

2

4
   

=
−(1 + 2𝐾𝑅) ± (2𝐾𝑅 − 1)

4
 

This means that: 

𝑝1 = −
1

2
; 𝑝2 = −𝐾𝑅 

Here we see that one pole is always in the left hand side of the plane. The other pole is 

dependent on the value of 𝐾𝑅, with stability, and non-oscillatory behavior, guaranteed for 𝐾𝑅 >

0. 

(b) Variation in 𝝉𝑰 

 

To study the impact of varying 𝜏𝐼 on the stability of the system, we will first fix 𝐾𝑅 = 4. 

We then have: 

𝑓(𝑠) = 2𝜏𝐼𝑠
2 + 9𝜏𝐼𝑠 + 8 = 0 

Now the roots of the system are: 

𝑝1,2 =
−9𝜏𝐼 ± √81𝜏𝐼

2 − 64𝜏𝐼

4𝜏𝐼
 



⇒ 𝑝1,2 = −9 ± √81 −
64

𝜏𝐼
 

As 𝜏𝐼 →  ∞, 𝑝1 → −18, 𝑝2 → 0 . The slower of the two poles tends to 0 from the left hand side, 

but stays negative. In such a situation, the system is stable and non-oscillatory. For certain 

conditions, the system can be stable but oscillatory. This happens when 𝜏𝐼 <
64

81
, leading to the 

term inside the square root being negative, and the formation of complex poles. 

 


